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Abstract The genomic basis of ageing still remains

unknown despite being a topic of study for many

years. Here, we present data from 20 experimentally

evolved laboratory populations of Drosophila mela-

nogaster that have undergone two different life-

history selection regimes. One set of ten populations

demonstrates early ageing whereas the other set of ten

populations shows postponed ageing. Additionally,

both types of populations consist of five long standing

populations and five recently derived populations. Our

primary goal was to determine which genes exhibit

changes in expression levels by comparing the female

transcriptome of the two population sets at two

different time points. Using three different sets of

increasingly restrictive criteria, we found that

2.1–15.7% (82–629 genes) of the expressed genes

are associated with differential ageing between pop-

ulation sets. Conversely, a comparison of recently

derived populations to long-standing populations

reveals little to no transcriptome differentiation,

suggesting that the recent selection regime has had a

larger impact on the transcriptome than its more

distant evolutionary history. In addition, we found

very little evidence for significant enrichment for

functional attributes regardless of the set of criteria

used. Relative to previous ageing studies, we find little

overlap with other lists of aging related genes. The

disparity between our results and previously published

results is likely due to the high replication used in this

study coupled with our use of highly differentiated

populations. Our results reinforce the notion that the

use of genomic, transcriptomic, and phenotypic data to

uncover the genetic basis of a complex trait like ageing

can benefit from experimental designs that use highly

replicated, experimentally-evolved populations.
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Introduction

The use of evolutionary genomics to study aging is

still in its infancy (Braendle et al. 2011; Rose and

Burke 2011; Hubley et al. 2016; Graves et al. 2017).

Experimental evolution offers extreme phenotypic

differentiation among traits in replicated populations
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(Garland and Rose 2009). Combining such popula-

tions with high-throughput omics can identify impor-

tant genetic variants (Hubley et al. 2016; Bryant et al.

2017) and intermediate molecular phenotypes such as

expression levels (Remolina et al. 2012; Mallard et al.

2018). This experimental and analytical framework

has the potential to suggest causal genetic regions in

the genome and unexpected molecular mechanisms

responsible for the differentiation of ageing and

characters related to it.

Despite ageing having been a subject of study for

many decades, a precise understanding of its under-

lying physiological and molecular mechanisms

remains elusive. One type of study has focused on

knocking out candidate genes to examine its effect on

longevity (Bray et al. 2016). Other types of studies

have focused on changes at the genomic level between

populations of varying ageing patterns (Remolina

et al. 2012), with an extension of this approach to the

analysis of transcriptome differentiation (Carlson et al.

2015; Sarup et al. 2011a, b). Many of these latter

studies focus on either a single population tracked over

several life stages or on different populations exposed

to different treatments that result in differing ageing

patterns, in order to uncover the transcriptome changes

that result from altered ageing.

A more extreme kind of comparison is possible

when populations of the same chronological age differ

with respect to whether they are ageing at all. Burke

et al. (Burke et al. 2016) have demonstrated that two

sets of ten Drosophila melanogaster populations,

called ‘‘A’’ and ‘‘C’’, show distinctively different

ageing patterns: The A populations begin demo-

graphic ageing at least 2 weeks before the C popula-

tions. These twenty populations also show extensive

and consistent differences in genome-wide patterns of

single-nucleotide polymorphism (SNP), transposable

element (TE), and structural variant (SV) frequencies

(Burke et al. 2016; Graves et al. 2017).

We sequenced the transcriptomes of the 20 A and C

populations of D. melanogaster populations. Expres-

sion profiling was performed on whole-body females

collected at both day 14 and day 21 from each cohort’s

egg-stage. At these collection points, the individuals

from the ten A populations had an adult age of 6 and

13 days respectively whereas those from the ten C

populations had an adult age of 2 and 9 days. These

time points were specifically chosen because A-type

populations show demographic ageing at those times,

unlike the C-type populations (Fig. 1). Given this

extreme demographic contrast, we compiled three

different lists of genes putatively associated with

ageing in D. melanogaster.

Results and discussion

Evidence for transcriptional convergence

within selection regimes

We employed double-stranded Illumina RNA-seq to

sequence the transcriptome of whole-body females

from the A and C populations to determine the

magnitude and patterns of differentiation as a result of

the selection regimes to which they have been

exposed. Due to the recent increase in annotated

noncoding RNA genes in D. melanogaster (Matthews

et al. 2015), a fraction of which lacks poly(A) tail

(Yang et al. 2011), we decided not to enrich for

poly(A) mRNAs. We made this choice in order to

perform an unbiased search across all transcripts. For

each population type by time point combination, 10

populations were profiled.

The median number of uniquely mapped sequenc-

ing reads per population was 8.1 million, bringing the

total to 332.7 million reads, which in total sequence

length amounts to * 21 Gb. This represents * 272-
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Fig. 1 Age specific log mortality plotted for the 20 populations

used. Mortality graphs were plotted for both A-type (black) and

C-type (blue) populations. Both types of populations consist of

five long standing populations (open circles) and five recently

derived populations (closed circles). The red lines show when

samples were collected for RNA-sequencing. More notably, for

day 21, the A-type populations are within their ageing trajectory

whereas the C-type populations are still in their pre-ageing

phase
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fold coverage of the fraction of the genome that has

been found to produce primary transcripts (Graveley

et al. 2011). Out of 17,481 gene features (from protein-

coding sequences to pseudogenes to non-coding RNA

genes) annotated in the R6.18 of D. melanogaster,

3994 were found to be reproducibly expressed at a

significant level across a majority of at least one of the

two population types, thereby excluding potential

transcriptomic noise, and therefore were considered

suitable for downstream analyses (‘‘Materials and

methods’’ section).

After data normalization relative to the total

transcript output, we performed a principal component

analysis on the transcript level of each of the expressed

genes. This led to a clear segregation of the samples by

time point and selection regime (Fig. S2). Due to

sequencing batch discrepancies at day 21, we

employed a linear mixed-effects model to account

for the effect of sequencing batch.

We then calculated the pairwise correlation coef-

ficients between the expression levels of the 20

populations assayed. To study the relationships among

all 20 populations studied, we used Pheatmap (Kolde

2015), a clustering program, that uses these correlation

coefficients and generates a dendrogram. The resulting

dendrogram perfectly separates the A- and C-popula-

tion types (Fig. S3). It is remotely conceivable that

these populations are grouped in the expected manner

due to chance. To address whether or not this result

occurred due to chance, we shuffled the expression

values within each gene and recreated 1000 simulated

dendrograms. We found that none of the simulated

dendrograms showed the same topology as our

experimental result (P\ 0.001). This is a particularly

remarkable result, because the populations within each

of the A and C types feature two subsets that have only

recently experienced parallel selection regimes. This

result provides strong evidence of genome-wide

transcriptional convergence of the two subtypes of

populations within each selection regime, which is

precisely in alignment with the convergence they

exhibit for both life history traits and genome-wide

variation (Burke et al. 2016; Graves et al. 2017).

Transcriptional differentiation between population

types

At a 5% false discovery rate (FDR) per gene, we found

906 genes differentially expressed in the A and C

populations: 277 at day 14 only, 366 at day 21 only,

and 263 at both time points (Fig. 2). 24.6% (i.e. 133)

of the differentially expressed genes at 14 days and

23.5% (i.e. 148) of the differentially expressed genes

at 21 days were found to differ by 2-fold or more,

respectively (Fig. 3a, b; Table S2). The highest

fraction of differentially expressed genes, across all

genes analyzed, is seen on day 21 (16.2% of expressed

genes vs. 14.7% on day 14). 24.9% (i.e. 225) of the

genes that are significantly differentiated at one of the

two time points are not significantly differentiated at

the other time point. Of the 540 differentially

expressed genes found at day 14, 229 (42.4%) genes

were significantly overexpressed in the A-type popu-

lations in relation to the C-type populations whereas

311 genes showed the opposite pattern. At day 21, the

proportion of significantly overexpressed genes in the

A-type versus the C-type population is very similar,

with 282 (44.8%) genes significantly overexpressed

out of 629.

Gene ontology (GO), KEGG pathway, and chro-

mosomal enrichment analyses found no biologically

interpretable patterns of differentiation at either time

point. Notably, when reviewing the gene-feature types

among the differentially expressed genes, we found

numerous non-coding RNA genes (ncRNA). Specif-

ically, we found significant differentiation for 402 and

482 protein-coding genes for day 14 and day 21,

respectively. There were 136 and 246 ncRNA genes

that were significantly differentiated for those same

time points, respectively. One annotated pseudogene

(CR18275) appeared also as differentially expressed at

each time point, and one tRNA gene was also found

differentially expressed on day 14. In light of the

numerous ncRNA genes found to be differentially

expressed, and the fact that there is little known about

them at the functional level, we repeated the GO

analyses without the inclusion of non-protein coding

genes. However, this more selective analysis provided

no evidence for significant enrichment with respect to

any biologically interpretable pattern.

Transcriptional differentiation due to ageing

There are numerous ways of curating these data to

obtain a list of genes differentially expressed due to

ageing. We adopted three different approaches: I, II,

and III. The relationships among these lists are

highlighted in Fig. 4.
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List for approach I

First, we simply compiled the genes that were

differentially expressed at day 21 between the A-type

and C-type populations. In this case, we purposefully

ignored day 14 because at day 14 both A-type and

C-type populations were transferred from vials to

cages shortly before being collected for sequencing,

potentially influencing expression levels for some of

the transcribed genes. In addition, day 21 is not

affected by the females from the C-type populations

not being fully sexually mature. More importantly, the

degree of mortality-rate differentiation between A and

C population types at day 21 is substantially higher

than at day 14 (Fig. 1).

We found 629 differentially expressed genes

between A-type and C-type populations at day 21.

Of these genes, 282 were significantly more expressed

in the A-type populations while 347 were more

expressed in the C-type populations (Fig. 2b).

Searching for biologically interpretable patterns

within this list found no significant pattern. This result

did not change after omitting 146 ncRNA genes and 1

pseudogene.

List for approach II

Next, we adopted a more stringent approach and

analyzed only genes that were differentially expressed

at both day 14 and day 21 between the A-type and

C-type populations. The rationale behind this

approach was that, at both time points, the A-type

populations are ageing whereas the C-type populations

have yet to age (Fig. 1). Essentially, we were inter-

ested in those genes that exhibit sustained interpop-

ulation differences across 7 days. We found 263

differentially expressed genes between A-type and

C-type populations at both day 14 and day 21. Of

them, 94 genes exhibit significantly higher expression

in the A-type populations whereas 169 do so in the

Fig. 2 Clustering of differentially expressed genes in the

female transcriptome of D. melanogaster between two popula-

tions types. Heatmaps for the two time points assayed: 14 days

(left), 492 genes; 21 days (right), 603 genes. Heatmaps were

generated using hierarchical clustering of gene normalized

mean expression levels. Ward’s minimum variance was used as

a distance metric. Gene clustering simultaneously results in a

perfect grouping of populations based on the type of selection

regime to which they were exposed. Blue, underexpression; red,

overexpression. The identity of each population is shown at the

bottom of each chart
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C-type populations (Fig. 3a, b). Again, no biologically

interpretable patterns were found, which did not

change upon omitting 73 ncRNA genes.

List for approach III

Lastly, we focused on genes that were differentially

expressed in the aging populations (A-type), but not in

the non-aging populations (C-type). More specifically,

we were interested in the genes that were differentially

expressed in the A-type populations between day 14

and day 21 but showed statistically similar expression

in the C-type populations between day 14 and day 21.

The A-type populations are clearly ageing between

day 14 and day 21 (Fig. 1) and therefore identifying

genes that are differentially expressed between these

two time points would capture potential ageing related

genes. As the C-type populations are not ageing during

this same time frame, the cross examination of the two

sets of genes should eliminate any genes that are

differentially expressed due to any random environ-

mental artifacts at day 14. We ultimately found 82

genes that fit these criteria. Of these 82 genes, 38 had

higher expression in the day 14 A-type populations

and 44 had higher expression in the day 21 A-type

populations (Fig. 3c, d). Further, the search for

biologically interpretable patterns among these 82

genes revealed an enrichment for genes associated

with the ABC transporter-like pathway (GO:0005524,

GO:0016887: Padj = 0.021). ABC transporter proteins

are part of the ATP-Binding Cassette (ABC) super-

family and are widely used in the hydrolysis of ATP to

energize many biological processes. These trans-

porters are key for the import and export of many
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Fig. 3 Differences in mRNA abundance in the female tran-

scriptome between two population types and two time points.

Volcano plots for day 14 and day 21 (a, b) time points show the

differences in expression between the populations types A and

C. Similar plots for A-type and C-type (c, d) populations

showing differences in expression between the two time points.

x axis, difference in normalized log2-transformed expression

difference in mRNA abundance between day-21 and day-14;

y axis, significance of the differences as - log10(Padj value).

Statistically significant differences were determined using a

linear mixed effect model. Blue dotted line, Padj = 0.05
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substrates, in particular toxins (Saurin et al. 1999).

Similar to the previous analyses, there were numerous

ncRNA genes within this list. Specifically, we found

61 protein coding genes, 19 ncRNA genes and 2 tRNA

genes. Removing the 19 ncRNA genes due to their

poor functional annotation led to the detection of no

additional patterns.

The gene lists obtained upon applying these three

sets of criteria not only differ in the total number of

genes included, but also in the degree of overlap

(Fig. 4). List II is essentially a more restricted version

of list I, as the transcriptome differentiation in day 14

is incorporated. List III differs substantially from list I

and list II, with 49 (59.8%) of the genes being specific

to it.

Genomic comparison

We compared our three lists of ageing-related genes

with that previously identified from genomic analysis

(Graves et al. 2017), in order to determine what

fraction of the differentially expressed genes between

population types harbored significantly differentiated

SVs, TE insertions, and SNPs. For SVs specifically,

we were interested in in duplications and deletion

events that could modify expression levels (Cardoso-

Moreira et al. 2016). Next, we checked for local TE

insertions that may also affect gene expression (Crid-

land et al. 2015). Lastly for SNPs, we were interested

in finding differentiation in gene regions that can

accommodate cis-regulatory motifs, i.e. the 50 and 30

UTRs and the promoter. The latter was taken to reside

within 1 kb upstream of the transcriptional start site of

the gene. To this purpose, we examined both coding

and non-coding gene regions, including exons,

introns, and the aforementioned untranslated regions,

as well as the upstream region for each of the

differentially expressed genes.

We identified 12, 8, and 2, in lists I, II, and III

respectively, differentially expressed genes that har-

bor differentiated SVs (Table S2). In contrast, only 3,

2, and 0, differentially expressed genes between the

A-type and C-type populations contain differentiated

TE. Further, we identified 48, 26, and 4 differentially

expressed genes (Table 1) that harbored differentiated

SNPs in lists I, II, and III respectively. Of these genes,

66.7% (32), 69.2% (18), and 75% (3), respectively,

had such SNPs within exonic or intronic regions. More

importantly, 60.4% (29), 65.4% (17), and 50% (2) of

the genes, respectively, contained SNPs in at least one

gene region where cis-regulatory motifs reside, poten-

tially contributing to the detected differences in

mRNA abundance. The remaining differentially

expressed genes either have no differentiated SNPs

or the SNPs are located in gene regions usually devoid

of cis-regulatory motifs. Differences in gene expres-

sion for this latter gene set should be primarily

influenced by trans-regulatory effects.

List I List II

List III

49

0

0

337

29

259

4

Fig. 4 Venn diagram showing the overlap between the three

different lists of ageing related genes. The three gene lists were

curated using different outlooks on the same data set

Table 1 Cis-regulatory nature of population-differentiating-SNPs in ageing-related differentially expressed genes

Cis-regulatory motifs Non-cis-regulatory motifs

Promoter 50UTR 30UTR Combined* Exons Introns Combined* Total*

List I 20 9 7 29 18 19 32 48

List II 13 4 4 17 12 14 18 26

List III 2 0 0 2 2 2 3 4

*Non-redundant among different gene regions
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Comparison of ageing genes to previous lists

of ageing-related genes

We compared our lists of candidate ageing genes to

others obtained in similar studies. First, we considered

the gene list at the repository for D. melanogaster at

GenAge (de Magalhaes 2014). Of the 193 genes

present in the GenAge database, only four were also

part of List I. Lists II and III showed no overlap with

the GenAge list. This lack of overlap may be due to the

fact that GenAge specifically focuses on genes that

have an ortholog associated with ageing in humans. In

addition, GenAge focuses on genes that are only

ageing-specific, and omits genes that may play roles in

other biological processes.

Subsequently, and more in the context of transcrip-

tomic changes associated with ageing, we compared

our lists to that from a previously published expression

profiling study in D. melanogaster (Carlson et al.

2015). That study found 1581 genes differentially

expressed across 11 time points and 79 days, com-

pared to a control sample consisting of 2-day old (after

eclosion) females. We identified 51, 20, and 5 genes

from their list that were also present in our I, II and III

lists, respectively. Interestingly, this is lower than

what we found by randomly selecting 1581 genes from

the reference genome and compare it to our ageing

lists. After 1000 simulations, we found that the

probability of having at least 51, 20, or 5 overlapping

genes from lists I, II, and III respectively was 0.824,

0.825, and 0.890. Thus random selections of genes

have more overlap with our results than the genes

identified by Carlson et al. (Carlson et al. 2015).

Conversely, if we were to take a random sample from

the reference genome using the length of our three lists

individually and compared it to their list of 1581

genes, we found the probability of having at least the

same number of overlapping genes as observed was

0.445, 0.574, and 0.759 for lists I, II, and III

respectively. A major difference between our study

and that of Carlson et al. (Carlson et al. 2015) is how a

gene was ultimately considered to be associated with

ageing. The gene list in Carlson et al. (Carlson et al.

2015) was obtained by studying transcriptional

changes in one large population over time, always

relative to the first time point. By contrast, the lists

generated in this study derive from comparing an

ageing set of populations and a non-ageing set of

populations under three different sets of assumptions.

An additional difference is that the females collected

in the study of Carlson et al. (Carlson et al. 2015) were

exposed to males for only 24 h before the beginning of

the assay, whereas our samples contain females that

were exposed to males the entire time up until their

sampling point.

Power of replication

We evaluated how our level of replication might have

impacted our inferences. The power to detect differ-

entially expressed genes is negligible with only four or

fewer replicates, which holds regardless of the set of

criteria used to deem a gene as ageing-related (Fig. 5).

Therefore, it is surprising that studies with this low

level of replication find even more differentially

expressed genes (Carlson et al. 2015; Hsu et al.

2019). Combiningmultiple inbred or isofemale lines is

commonplace inDrosophila studies, but they might in

fact contribute to the large number of differentially

expressed genes documented. Increased linkage dis-

equilibrium, which is a typical consequence of com-

bining multiple lines, and having insufficient

replication are likely to result in unforeseen effects

in gene expression. Therefore, our results strongly

suggest that, given the phenotypic plasticity of

expression levels (Scheiner et al. 2012; Dayan et al.

2015), using properly maintained evolved populations

that derived from an outbred population plus high

replication levels are crucial to reduce both type I

errors and type II errors when generating a portrait of

differences in gene expression.

Conclusions

Having two clearly defined sets of D. melanogaster

populations has enabled us to dissect what is ageing-

related in the transcriptome. Specifically, one set of ten

populations (A-type) is demographically ageing

between day 14 and day 21 and the other set of ten

populations (C-type) is not demographically ageing

(Fig. 1). This extreme contrast of ageing vs non-

ageing populations is particularly useful, because we

can assay them at the same chronological ages, day 14

and day 21. In addition, these populations are not

exposed to any metabolic arrest or other manipulation

[e.g. nematodes, (Ayyadevara et al. 2008)]; their

differences are genetic. Lastly, these two sets of
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populations are closely related, despite the stark

difference in their ageing patterns between day 14

and day 21.

Furthermore, these two sets of ten populations have

been extensively characterized for genomic differen-

tiation (Graves et al. 2017), developmental differen-

tiation (Burke et al. 2016), and physiological

differentiation (Rose et al. 2004) (Kezos et al. in

prep.). Developmentally, the two sets of ten popula-

tions show SNP, TE and SV differentiation. Pheno-

typically, the 10 A-type populations develop from egg

to pupation and pupation to eclosion significantly

faster than the 10 C-type populations. Physiologically,

the A-type populations have a shorter time to starva-

tion than the C-type populations and the same is true

for desiccation. Considering the stark difference

between the two sets of populations at the genomic

and phenotypic levels, it is not surprisingly that we

find here a substantial amount of transcriptomic

differentiation.

Unlike the statistical results testing for differenti-

ation between A-type and C-type populations, within

A-type comparisons of populations and within C-type

comparisons show little to no differentiation. That is,

the transcriptomic results are parallel to those previ-

ously found for within-type convergence with respect

to life-history phenotypes (Burke et al. 2016) and

genomics (Graves et al. 2017). As before, this

convergence has arisen despite two very different

selection histories underlying the differentiation of

members of the A and C sets of populations. Specif-

ically, the A group is made up of five populations that

share long-standing A-type selection (the ACO), as

well as five other populations that have undergone

A-type selection for substantially fewer generations

(the AO). Likewise, the C group is made up of five

populations that share relatively long-standing C-type

selection (the CO), as well as five other populations

that have undergone C-type selection for substantially

fewer generations (the nCO). The newly derived

populations are much more closely-related phyloge-

netically than the longer-standing populations, with

just 327 generations separating them versus 1171

generations separating the longer-standing popula-

tions. When comparing the newly derived populations

with each other and with their selection regime counter

parts (AO with ACO; nCO with CO), we find that the

newly-derived populations show no evidence of less

differentiation, suggesting that recent selection regime

has a larger impact on the transcriptome than evolu-

tionary history, as we have previously found both

phenotypically and genomically (Burke et al. 2016;

Graves et al. 2017). We believe this notion only stands

true for populations that maintain moderate census

size to combat the effects of inbreeding. With inbred

populations, we would expect evolutionary history to

have a larger impact on the transcriptome than recent

selection regime (Sarup et al. 2011a, b).
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Fig. 5 Differentially

expressed genes versus

number of replicates in each

treatment. a Number of

differentially expressed

genes determined between

the A-type and C-type for

both day 14 and day 21

depending on the number of

replicates included in the

analysis. b Number of

differentially expressed

genes between A-type and

C-type populations

sustained at both day 14 and

day 21. c Number of

differentially expressed

genes deemed ageing-

related between ageing

populations and non-ageing

populations
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When reviewing the nature of each differentiated

gene, there was a high proportion of non-coding RNA

genes that were differentially expressed. These genes

are currently poorly understood. But due to their

abundance among systematically differentiated tran-

scripts in our data, our findings support the hypothesis

that they can play an important role in gene regulation

(Deveson et al. 2017). Another striking result was that

only 4–6%, depending on which criteria used, of the

differentially expressed genes between the A-type and

O-type populations harbored SVs, TE insertions, or

SNPs in cis-regulatory regions, suggesting that much

of the transcriptome differentiation between popula-

tion types stems primarily from trans-regulatory

effects.

Next, when comparing our lists of ageing-related

genes to that of previous ageing related work (Carlson

et al. 2015; Hsu et al. 2019), we find very little overlap

with previous findings. In addition, we find little to no

enrichment for biological processes delimited in GO

with our ageing-related lists of differentiated tran-

scripts. These two results together suggest that our lists

are novel relative to the current state of ageing

transcriptomics in D. melanogaster.

Here we have presented two-time point compar-

isons using ten replicates for each set of populations.

But it is clear from Fig. 5 that even at ten replicates we

have not reached saturation for detection of differen-

tially expressed genes, suggesting that still more

replication would allow better detection of transcripts

that differentiate with respect to ageing versus non-

ageing. In addition to increased replication, more time

point sampling should improve our understanding of

how the transcriptome is affected by ageing. Lastly,

integrating genomic analysis with still more powerful

transcriptomics should further improve our under-

standing of how differentially expressed transcripts

are regulated.

Currently, we have only sequenced the transcrip-

tomes of our A-type and C-type populations, because

of their clear difference in ageing. Adding additional

types of populations to transcriptomic analysis should

foster the parsing of transcriptomic differentiation

with respect to whether or not any particular transcript

difference is involved in the differentiation of ageing

versus other types of phenotypic differentiation. In

previous phenotypic and genomic work, we have used

an intermediate set of ten populations, the B-type, in

addition to the current sets (Burke et al. 2016; Graves

et al. 2017; Mueller et al. 2018). The B-type popula-

tions have a generation length of 14 days, which falls

between that of the A-type and C-type populations.

The B-type populations would be therefore a prime

candidate to add to bolster our ability to parse

transcriptomic differentiation.

Although having a full suite of genomic, transcrip-

tomic, and phenotypic data is powerful in itself,

parsing all three bodies of data together is challenging.

Due to the inherent complexity of ageing, complexity

should be maintained and not sacrificed when analyz-

ing all these data together. Modeling techniques

commonly called ‘‘AI’’, but more properly defined as

statistical learning (Hastie et al. 2009), allow us to

address this challenge of parsing complexity. Cur-

rently, the Fused Lasso Additive Model or FLAM

(Petersen et al. 2016; Mueller et al. 2018) shows

promise in making sense of large data sets, such as

those of genomic data. Ultimately, we propose that

combining the omics of highly replicated experimen-

tally evolved populations with statistical learning tools

could prove promising for uncovering the foundations

of any complex trait, those of ageing included.

Materials and methods

Experimental populations

The populations used here were experimentally

evolved over numerous generations (Rose et al.

2004; Burke et al. 2016; Graves et al. 2017). These

populations were subject to two selection regimes

which differed in length of their discrete generations.

Each selection regime was applied to two sets of five

populations, each with known distinct evolutionary

histories (Fig. S1). The ACO and AO sets are both

A-type, whereas the CO and nCO populations are both

C-type. Although the individuals of the two popula-

tion-types differ in body size, there is no evidence of

major allometric differences.

Fly husbandry

Each population is maintained over generations at a

census size of * 2000 individuals in order to reduce

the effects of genetic drift on genetic variation. Flies

are kept in 8-dram plastic vials during development

and placed in Plexiglass cages on day 10 (A-type) and
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day 14 (C-type). For the A-type treatment, once the

flies are placed in cages, they are given a 24 h

oviposition window on fresh food. For the C-type

treatment, the flies are left in cages until day 26, when

they are given 48 h to oviposit on fresh food. All

populations are fed with fresh medium made with

cooked bananas, corn syrup, yeast, barley malt, and

agar (Rose et al. 2004). Fresh food is supplemented

with 5% live yeast paste to enhance oviposition

duration egg-laying. All populations are kept at about

23 �C and exposed to a 24-h light cycle.

RNA preparation and sequencing

For each population and time point combination, 150

whole-body females from the same cohort were

submerged in TRIzol, snap-frozen in liquid nitrogen,

and stored at - 80C until extraction. Total RNA was

purified using the RNeasy Mini Kit (Qiagen). RNA

concentration, purity, and integrity were estimated

using a NanoDrop 8000 Spectrophotometer and the

RNA 6000 Nano Chip Kit (Agilent Technologies)

with an Agilent 2100 Bioanalyzer. Ribodepleted,

strand-specific paired-end libraries were prepared

using the Ribo-Zero Gold Set A and the TruSeq Total

RNA Library Prep kits from Illumina. Libraries were

multiplexed and sequenced from both ends for 75

cycles over four lanes on an Illumina HiSeq2500 at the

University California Irvine Genomics High Through-

put Facility.

Gene expression analysis

Quality checks of each RNA paired-end sequencing

output were performed with FastQC v0.11.5 (Andrews

2010). Subsequent sequence processing with Trim-

momatic v0.35 (Bolger et al. 2014) included removal

of adapter sequences, trimming of 30 nucleotide calls

with Phred score lower than 30, and filtering out of

sequencing reads with a final length lower than 36 bp

or overall Phred score lower than 30. Paired-end reads

were mapped to the D. melanogaster Release v6.18

reference genome assembly (dos Santos et al. 2015)

using STAR (Dobin et al. 2013)—under default

settings except for an adjustment to avoid the detection

of novel junctions—as this tool shows enhanced

accuracy mapping rates in relation to other alignment

tools (Baruzzo et al. 2017). The average alignment rate

for the 40 sequencing outputs was 89.5%

(minimum = 73.3%, maximum = 97.8%). Alignment

post-processing was performed with SAMtools

v0.1.19 (Li et al. 2009). Read counting per gene and

population was done using HTSeq v0.6.1p1 (Anders

et al. 2013) at default settings. Genome coverage was

estimated using the genomeCoverageBed utility from

BEDTools v2.25.0 (Cridland et al. 2015). Summary

statistics and NCBI SRA accession numbers are

provided in Table S1.

For each sample, per gene read counts were

normalized using the default DESeq2 settings (Love

et al. 2014). Genes showing normalized count values

[ 4 in at least eight out of ten populations, within at

least one of the treatment types, were included in

downstream analyses. To see any relationships

between populations, we conducted a principal com-

ponent analysis with the normalized count data using

prcomp and ggplot2 (Wickham 2016). To accommo-

date any block effect associated with different rounds

of extraction and sequencing, the normalized count

data for reproducibly expressed genes were analyzed

using a linear mixed effects model (R Development

Core Team 2016). In each population we have a

measure of gene expression, eijk, from selection

treatment-i (i = 1 (A) or 2(C)), block-j (j = 1 (ACO

and CO) or 2 (AO and nCO)), and population-

k (k = 1,..,20). We can then model expression with

the mixed linear effects function,

eijk ¼ lþ diai þ bj þ ek;

where di = 0, if i = 1 and 1 otherwise, b and e are

assumed to be independent random variables with a

normal distribution with zero mean and variances r21
and r22 respectively. Significant treatment effects are

determined by testing whether a2 is significantly

different from zero.

Statistical significance for differential expression of

any given gene was set at a 5% FDR for* 4000 tests,

i.e. the number of expressed genes that passed filtering

(Benjamini and Hochberg 1995).

Searches for biological patterns across GO and

KEGG terms, and other genome features such as

chromosome distribution, were performed using

DAVID 6.8 (da Huang et al. 2009). The Benjamini–

Hochberg correction for multiple tests was applied

given that we were performing 50-600 tests, i.e. the

number of differentially expressed genes inputted into

DAVID, across different gene lists.

123

Biogerontology



Acknowledgements We thank Bryan Clifton for technical

help and to the University of California, Irvine High-

Performance Computing cluster for facilitating our analyses.

This work was supported by a FRT UCI award to J.M.R. and, in

part, through access to the Genomics High Throughput Facility

Shared Resource of the Cancer Center Support Grant (P30CA-

062203) at the University of California, Irvine and NIH shared

instrumentation grants 1S10RR025496-01, 1S10OD010794-01,

and 1S10OD021718-01 and from funds provided by the UCI

School of Biological Sciences.

References

Anders S, McCarthy DJ, Chen Y, Okoniewski M, Smyth GK,

Huber W, Robinson MD (2013) Count-based differential

expression analysis of RNA sequencing data using R and

Bioconductor. Nat Protoc 8(9):1765–1786

Andrews S (2010) FastQC: a quality control tool for high

throughput sequence data. Babraham Institute. Available at

http://www.bioinformatics.babraham.ac.uk/projects/fastqc/

Ayyadevara S, Alla R, Thaden JJ, Shmookler Reis RJ (2008)

Remarkable longevity and stress resistance of nematode

PI3 K-null mutants. Aging Cell 7(1):13–22

Baruzzo G, Hayer KE, Kim EJ, Di Camillo B, FitzGerald GA,

Grant GR (2017) Simulation-based comprehensive

benchmarking of RNA-seq aligners. Nat Methods

14(2):135–139

Benjamini Y, Hochberg Y (1995) Controlling the false discov-

ery rate—a practical and powerful approach to multiple

testing. J R Stat Soc Ser B 57(1):289–300

Bolger AM, Lohse M, Usadel B (2014) Trimmomatic: a flexible

trimmer for Illumina sequence data. Bioinformatics

30(15):2114–2120

Braendle C, Heyland A, Flatt T (2011) Integrating mechanistic

and evolutionary analysis of life history variation. In: Flatt

T, Heyland A (eds) Mechanisms of life history evolution:

the genetics and physiology of life history traits and trade-

offs. Oxford University Press, New York, pp 1–10

Bray NL, Pimentel H, Melsted P, Pachter L (2016) Erratum:

near-optimal probabilistic RNA-seq quantification. Nat

Biotechnol 34(8):888

Bryant DM, Johnson K, DiTommaso T, Tickle T, Couger MB,

Payzin-Dogru D, Lee TJ, Leigh ND, Kuo T-H, Davis FG

et al (2017) A tissue-mapped axolotl de novo transcriptome

enables identification of limb regeneration factors. Cell

Rep 18(3):762–776

Burke MK, Barter TT, Cabral LG, Kezos JN, Phillips MA,

Rutledge GA, Phung KH, Chen RH, Nguyen HD, Mueller

LD et al (2016) Rapid divergence and convergence of life-

history in experimentally evolved Drosophila melanoga-

ster. Evolution 70(9):2085–2098

Cardoso-Moreira M, Arguello JR, Gottipati S, Harshman LG,

Grenier JK, Clark AG (2016) Evidence for the fixation of

gene duplications by positive selection in Drosophila.

Genome Res 26(6):787–798

Carlson KA, Gardner K, Pashaj A, Carlson DJ, Yu F, Eudy JD,

Zhang C, Harshman LG (2015) Genome-wide gene

expression in relation to age in large laboratory cohorts of

Drosophila melanogaster. Genet Res Int 2015:835624

Cridland JM, Thornton KR, Long AD (2015) Gene expression

variation in Drosophila melanogaster due to rare trans-

posable element insertion alleles of large effect. Genetics

199(1):85–93

da HuangW, Sherman BT, Lempicki RA (2009) Systematic and

integrative analysis of large gene lists using DAVID

bioinformatics resources. Nat Protoc 4(1):44–57

Dayan DI, Crawford DL, Oleksiak MF (2015) Phenotypic

plasticity in gene expression contributes to divergence of

locally adapted populations of Fundulus heteroclitus. Mol

Ecol 24(13):3345–3359

de Magalhaes JP (2014) Why genes extending lifespan in model

organisms have not been consistently associated with

human longevity and what it means to translation research.

Cell Cycle 13(17):2671–2673

Development Core Team R (2016) R: a language and environ-

ment for statistical computing. R Foundation for Statistical

Computing, Vienna

Deveson IW, Hardwick SA, Mercer TR, Mattick JS (2017) The

dimensions, dynamics, and relevance of the mammalian

noncoding transcriptome. Trends Genet 33(7):464–478

Dobin A, Davis CA, Schlesinger F, Drenkow J, Zaleski C, Jha S,

Batut P, Chaisson M, Gingeras TR (2013) STAR: ultrafast

universal RNA-seq aligner. Bioinformatics 29(1):15–21

dos Santos G, Schroeder AJ, Goodman JL, Strelets VB, Crosby

MA, Thurmond J, Emmert DB, Gelbart WM, FlyBase C

(2015) FlyBase: introduction of the Drosophila melano-

gaster release 6 reference genome assembly and large-

scale migration of genome annotations. Nucleic Acids Res

43(Database issue):D690–D697

Garland T, Rose MR (2009) Experimental evolution. University

of California Press, Berkeley, CA

Graveley BR, Brooks AN, Carlson JW, Duff MO, Landolin JM,

Yang L, Artieri CG, van Baren MJ, Boley N, Booth BW

et al (2011) The developmental transcriptome of Droso-

phila melanogaster. Nature 471(7339):473–479

Graves JL Jr, Hertweck KL, Phillips MA, Han MV, Cabral LG,

Barter TT, Greer LF, Burke MK, Mueller LD, Rose MR

(2017) Genomics of parallel experimental evolution in

Drosophila. Mol Biol Evol 34(4):831–842

Hastie T, Tibshirani R, Friedman JH (2009) The elements of

statistical learning: data mining, inference, and prediction.

Springer, New York

Hsu SK, Jaksic AM, Nolte V, Barghi N, Mallard F, Otte KA,

Schlotterer C (2019) A 24 h age difference causes twice as

much gene expression divergence as 100 generations of

adaptation to a novel environment. Genes 10(2):89

Hubley R, Finn RD, Clements J, Eddy SR, Jones TA, Bao W,

Smit AF, Wheeler TJ (2016) The Dfam database of

repetitive DNA families. Nucleic Acids Res 44(D1):D81–

D89

Kolde R (2015) pheatmap: Pretty Heatmaps. R package version

1.0.8

Li H, Handsaker B, Wysoker A, Fennell T, Ruan J, Homer N,

Marth G, Abecasis G, Durbin R, Genome Project Data

Processing S (2009) The sequence alignment/map format

and SAMtools. Bioinformatics 25(16):2078–2079

Love MI, Huber W, Anders S (2014) Moderated estimation of

fold change and dispersion for RNA-seq data with DESe-

q2. Genome Biol 15(12):550

123

Biogerontology

http://www.bioinformatics.babraham.ac.uk/projects/fastqc/


Mallard F, Nolte V, Tobler R, Kapun M, Schlotterer C (2018) A

simple genetic basis of adaptation to a novel thermal

environment results in complex metabolic rewiring in

Drosophila. Genome Biol 19(1):119

Matthews BB, dos Santos G, CrosbyMA, Emmert DB, St Pierre

SE, Gramates LS, Zhou PL, Schroeder AJ, Falls K, Strelets

V et al (2015) Gene model annotations for Drosophila

melanogaster: impact of high-throughput data. G3

5(8):1721–1736

Mueller LD, Phillips MA, Barter TT, Greenspan ZS, Rose MR

(2018) Genome-wide mapping of gene-phenotype rela-

tionships in experimentally evolved populations. Mol Biol

Evol 35(8):2085–2095

Petersen A, Witten D, Simon N (2016) Fused lasso additive

model. J Comput Graph Stat 25(4):1005–1025

Remolina SC, Chang PL, Leips J, Nuzhdin SV, Hughes KA

(2012) Genomic basis of aging and life-history evolution in

Drosophila melanogaster. Evolution 66(11):3390–3403

Rose MR (1984) Laboratory evolution of postponed senescence

in Drosophila melanogaster. Evolution 38(5):1004–1010

Rose MR, Burke MK (2011) Genomic croesus: experimental

evolutionary genetics of Drosophila aging. Exp Geront

46(5):397–403

Rose MR, Passananti HB, Matos M (2004) Methuselah flies.

World Scientific Publishing, Singapore

Sarup P, Sørensen JG, Kristensen TN, Hoffmann AA,

Loeschcke V, Paige KN, Sørensen P (2011a) Candidate

genes detected in transcriptome studies are strongly

dependent on genetic background. PLoS ONE 6(1):e15644

Sarup P, Sørensen P, Loeshcke V (2011b) Flies selected for

longevity retain a young gene expression profile. Age

33(1):69–80

Saurin W, Hofnung M, Dassa E (1999) Getting in or out: early

segregation between importers and exporters in the evo-

lution of ATP-binding cassette (ABC) transporters. J Mol

Evol 48(1):22–41

Scheiner SM, Barfield M, Holt RD (2012) The genetics of

phenotypic plasticity. XI. Joint evolution of plasticity and

dispersal rate. Ecol Evol 2(8):2027–2039

Wickham H (2016) ggplot2: elegant graphics for data analysis.

Springer, New York

Yang L, Duff MO, Graveley BR, Carmichael GG, Chen LL

(2011) Genomewide characterization of non-polyadeny-

lated RNAs. Genome Biol 12(2):R16

Publisher’s Note Springer Nature remains neutral with

regard to jurisdictional claims in published maps and

institutional affiliations.

123

Biogerontology


	Drosophila transcriptomics with and without ageing
	Abstract
	Introduction
	Results and discussion
	Evidence for transcriptional convergence within selection regimes
	Transcriptional differentiation between population types
	Transcriptional differentiation due to ageing
	List for approach I
	List for approach II
	List for approach III
	Genomic comparison
	Comparison of ageing genes to previous lists of ageing-related genes
	Power of replication

	Conclusions
	Materials and methods
	Experimental populations
	Fly husbandry
	RNA preparation and sequencing
	Gene expression analysis

	Acknowledgements
	References




