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Abstract The genomic basis of ageing still remains
unknown despite being a topic of study for many
years. Here, we present data from 20 experimentally
evolved laboratory populations of Drosophila mela-
nogaster that have undergone two different life-
history selection regimes. One set of ten populations
demonstrates early ageing whereas the other set of ten
populations shows postponed ageing. Additionally,
both types of populations consist of five long standing
populations and five recently derived populations. Our
primary goal was to determine which genes exhibit
changes in expression levels by comparing the female
transcriptome of the two population sets at two
different time points. Using three different sets of
increasingly restrictive criteria, we found that
2.1-15.7% (82-629 genes) of the expressed genes
are associated with differential ageing between pop-
ulation sets. Conversely, a comparison of recently
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derived populations to long-standing populations
reveals little to no transcriptome differentiation,
suggesting that the recent selection regime has had a
larger impact on the transcriptome than its more
distant evolutionary history. In addition, we found
very little evidence for significant enrichment for
functional attributes regardless of the set of criteria
used. Relative to previous ageing studies, we find little
overlap with other lists of aging related genes. The
disparity between our results and previously published
results is likely due to the high replication used in this
study coupled with our use of highly differentiated
populations. Our results reinforce the notion that the
use of genomic, transcriptomic, and phenotypic data to
uncover the genetic basis of a complex trait like ageing
can benefit from experimental designs that use highly
replicated, experimentally-evolved populations.

Keywords Experimental evolution - Life history
traits - Ageing - Transcriptome differentiation -
Drosophila melanogaster

Introduction

The use of evolutionary genomics to study aging is
still in its infancy (Braendle et al. 2011; Rose and
Burke 2011; Hubley et al. 2016; Graves et al. 2017).
Experimental evolution offers extreme phenotypic
differentiation among traits in replicated populations
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(Garland and Rose 2009). Combining such popula-
tions with high-throughput omics can identify impor-
tant genetic variants (Hubley et al. 2016; Bryant et al.
2017) and intermediate molecular phenotypes such as
expression levels (Remolina et al. 2012; Mallard et al.
2018). This experimental and analytical framework
has the potential to suggest causal genetic regions in
the genome and unexpected molecular mechanisms
responsible for the differentiation of ageing and
characters related to it.

Despite ageing having been a subject of study for
many decades, a precise understanding of its under-
lying physiological and molecular mechanisms
remains elusive. One type of study has focused on
knocking out candidate genes to examine its effect on
longevity (Bray et al. 2016). Other types of studies
have focused on changes at the genomic level between
populations of varying ageing patterns (Remolina
et al. 2012), with an extension of this approach to the
analysis of transcriptome differentiation (Carlson et al.
2015; Sarup et al. 2011a, b). Many of these latter
studies focus on either a single population tracked over
several life stages or on different populations exposed
to different treatments that result in differing ageing
patterns, in order to uncover the transcriptome changes
that result from altered ageing.

A more extreme kind of comparison is possible
when populations of the same chronological age differ
with respect to whether they are ageing at all. Burke
et al. (Burke et al. 2016) have demonstrated that two
sets of ten Drosophila melanogaster populations,
called “A” and “C”, show distinctively different
ageing patterns: The A populations begin demo-
graphic ageing at least 2 weeks before the C popula-
tions. These twenty populations also show extensive
and consistent differences in genome-wide patterns of
single-nucleotide polymorphism (SNP), transposable
element (TE), and structural variant (SV) frequencies
(Burke et al. 2016; Graves et al. 2017).

We sequenced the transcriptomes of the 20 A and C
populations of D. melanogaster populations. Expres-
sion profiling was performed on whole-body females
collected at both day 14 and day 21 from each cohort’s
egg-stage. At these collection points, the individuals
from the ten A populations had an adult age of 6 and
13 days respectively whereas those from the ten C
populations had an adult age of 2 and 9 days. These
time points were specifically chosen because A-type
populations show demographic ageing at those times,
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Fig. 1 Age specific log mortality plotted for the 20 populations
used. Mortality graphs were plotted for both A-type (black) and
C-type (blue) populations. Both types of populations consist of
five long standing populations (open circles) and five recently
derived populations (closed circles). The red lines show when
samples were collected for RNA-sequencing. More notably, for
day 21, the A-type populations are within their ageing trajectory
whereas the C-type populations are still in their pre-ageing
phase

unlike the C-type populations (Fig. 1). Given this
extreme demographic contrast, we compiled three
different lists of genes putatively associated with
ageing in D. melanogaster.

Results and discussion

Evidence for transcriptional convergence
within selection regimes

We employed double-stranded Illumina RNA-seq to
sequence the transcriptome of whole-body females
from the A and C populations to determine the
magnitude and patterns of differentiation as a result of
the selection regimes to which they have been
exposed. Due to the recent increase in annotated
noncoding RNA genes in D. melanogaster (Matthews
et al. 2015), a fraction of which lacks poly(A) tail
(Yang et al. 2011), we decided not to enrich for
poly(A) mRNAs. We made this choice in order to
perform an unbiased search across all transcripts. For
each population type by time point combination, 10
populations were profiled.

The median number of uniquely mapped sequenc-
ing reads per population was 8.1 million, bringing the
total to 332.7 million reads, which in total sequence
length amounts to ~ 21 Gb. This represents ~ 272-
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fold coverage of the fraction of the genome that has
been found to produce primary transcripts (Graveley
etal. 2011). Out of 17,481 gene features (from protein-
coding sequences to pseudogenes to non-coding RNA
genes) annotated in the R6.18 of D. melanogaster,
3994 were found to be reproducibly expressed at a
significant level across a majority of at least one of the
two population types, thereby excluding potential
transcriptomic noise, and therefore were considered
suitable for downstream analyses (“Materials and
methods” section).

After data normalization relative to the total
transcript output, we performed a principal component
analysis on the transcript level of each of the expressed
genes. This led to a clear segregation of the samples by
time point and selection regime (Fig. S2). Due to
sequencing batch discrepancies at day 21, we
employed a linear mixed-effects model to account
for the effect of sequencing batch.

We then calculated the pairwise correlation coef-
ficients between the expression levels of the 20
populations assayed. To study the relationships among
all 20 populations studied, we used Pheatmap (Kolde
2015), a clustering program, that uses these correlation
coefficients and generates a dendrogram. The resulting
dendrogram perfectly separates the A- and C-popula-
tion types (Fig. S3). It is remotely conceivable that
these populations are grouped in the expected manner
due to chance. To address whether or not this result
occurred due to chance, we shuffled the expression
values within each gene and recreated 1000 simulated
dendrograms. We found that none of the simulated
dendrograms showed the same topology as our
experimental result (P < 0.001). This is a particularly
remarkable result, because the populations within each
of the A and C types feature two subsets that have only
recently experienced parallel selection regimes. This
result provides strong evidence of genome-wide
transcriptional convergence of the two subtypes of
populations within each selection regime, which is
precisely in alignment with the convergence they
exhibit for both life history traits and genome-wide
variation (Burke et al. 2016; Graves et al. 2017).

Transcriptional differentiation between population
types

At a 5% false discovery rate (FDR) per gene, we found
906 genes differentially expressed in the A and C

populations: 277 at day 14 only, 366 at day 21 only,
and 263 at both time points (Fig. 2). 24.6% (i.e. 133)
of the differentially expressed genes at 14 days and
23.5% (i.e. 148) of the differentially expressed genes
at 21 days were found to differ by 2-fold or more,
respectively (Fig. 3a, b; Table S2). The highest
fraction of differentially expressed genes, across all
genes analyzed, is seen on day 21 (16.2% of expressed
genes vs. 14.7% on day 14). 24.9% (i.e. 225) of the
genes that are significantly differentiated at one of the
two time points are not significantly differentiated at
the other time point. Of the 540 differentially
expressed genes found at day 14, 229 (42.4%) genes
were significantly overexpressed in the A-type popu-
lations in relation to the C-type populations whereas
311 genes showed the opposite pattern. At day 21, the
proportion of significantly overexpressed genes in the
A-type versus the C-type population is very similar,
with 282 (44.8%) genes significantly overexpressed
out of 629.

Gene ontology (GO), KEGG pathway, and chro-
mosomal enrichment analyses found no biologically
interpretable patterns of differentiation at either time
point. Notably, when reviewing the gene-feature types
among the differentially expressed genes, we found
numerous non-coding RNA genes (ncRNA). Specif-
ically, we found significant differentiation for 402 and
482 protein-coding genes for day 14 and day 21,
respectively. There were 136 and 246 ncRNA genes
that were significantly differentiated for those same
time points, respectively. One annotated pseudogene
(CR18275) appeared also as differentially expressed at
each time point, and one tRNA gene was also found
differentially expressed on day 14. In light of the
numerous ncRNA genes found to be differentially
expressed, and the fact that there is little known about
them at the functional level, we repeated the GO
analyses without the inclusion of non-protein coding
genes. However, this more selective analysis provided
no evidence for significant enrichment with respect to
any biologically interpretable pattern.

Transcriptional differentiation due to ageing

There are numerous ways of curating these data to
obtain a list of genes differentially expressed due to
ageing. We adopted three different approaches: I, II,
and III. The relationships among these lists are
highlighted in Fig. 4.
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Fig. 2 Clustering of differentially expressed genes in the
female transcriptome of D. melanogaster between two popula-
tions types. Heatmaps for the two time points assayed: 14 days
(left), 492 genes; 21 days (right), 603 genes. Heatmaps were
generated using hierarchical clustering of gene normalized
mean expression levels. Ward’s minimum variance was used as

List for approach I

First, we simply compiled the genes that were
differentially expressed at day 21 between the A-type
and C-type populations. In this case, we purposefully
ignored day 14 because at day 14 both A-type and
C-type populations were transferred from vials to
cages shortly before being collected for sequencing,
potentially influencing expression levels for some of
the transcribed genes. In addition, day 21 is not
affected by the females from the C-type populations
not being fully sexually mature. More importantly, the
degree of mortality-rate differentiation between A and
C population types at day 21 is substantially higher
than at day 14 (Fig. 1).

We found 629 differentially expressed genes
between A-type and C-type populations at day 21.
Of these genes, 282 were significantly more expressed
in the A-type populations while 347 were more
expressed in the C-type populations (Fig. 2b).
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Searching for biologically interpretable patterns
within this list found no significant pattern. This result
did not change after omitting 146 ncRNA genes and 1
pseudogene.

List for approach II

Next, we adopted a more stringent approach and
analyzed only genes that were differentially expressed
at both day 14 and day 21 between the A-type and
C-type populations. The rationale behind this
approach was that, at both time points, the A-type
populations are ageing whereas the C-type populations
have yet to age (Fig. 1). Essentially, we were inter-
ested in those genes that exhibit sustained interpop-
ulation differences across 7 days. We found 263
differentially expressed genes between A-type and
C-type populations at both day 14 and day 21. Of
them, 94 genes exhibit significantly higher expression
in the A-type populations whereas 169 do so in the
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Fig. 3 Differences in mRNA abundance in the female tran-
scriptome between two population types and two time points.
Volcano plots for day 14 and day 21 (a, b) time points show the
differences in expression between the populations types A and
C. Similar plots for A-type and C-type (¢, d) populations
showing differences in expression between the two time points.

C-type populations (Fig. 3a, b). Again, no biologically
interpretable patterns were found, which did not
change upon omitting 73 ncRNA genes.

List for approach III

Lastly, we focused on genes that were differentially
expressed in the aging populations (A-type), but not in
the non-aging populations (C-type). More specifically,
we were interested in the genes that were differentially
expressed in the A-type populations between day 14
and day 21 but showed statistically similar expression
in the C-type populations between day 14 and day 21.
The A-type populations are clearly ageing between
day 14 and day 21 (Fig. 1) and therefore identifying
genes that are differentially expressed between these
two time points would capture potential ageing related
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x axis, difference in normalized log,-transformed expression
difference in mRNA abundance between day-21 and day-14;
y axis, significance of the differences as — log;o(Paq; value).
Statistically significant differences were determined using a
linear mixed effect model. Blue dotted line, P,q; = 0.05

genes. As the C-type populations are not ageing during
this same time frame, the cross examination of the two
sets of genes should eliminate any genes that are
differentially expressed due to any random environ-
mental artifacts at day 14. We ultimately found 82
genes that fit these criteria. Of these 82 genes, 38 had
higher expression in the day 14 A-type populations
and 44 had higher expression in the day 21 A-type
populations (Fig. 3c, d). Further, the search for
biologically interpretable patterns among these 82
genes revealed an enrichment for genes associated
with the ABC transporter-like pathway (GO:0005524,
GO:0016887: P,4; = 0.021). ABC transporter proteins
are part of the ATP-Binding Cassette (ABC) super-
family and are widely used in the hydrolysis of ATP to
energize many biological processes. These trans-
porters are key for the import and export of many
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Fig. 4 Venn diagram showing the overlap between the three
different lists of ageing related genes. The three gene lists were
curated using different outlooks on the same data set

substrates, in particular toxins (Saurin et al. 1999).
Similar to the previous analyses, there were numerous
ncRNA genes within this list. Specifically, we found
61 protein coding genes, 19 ncRNA genes and 2 tRNA
genes. Removing the 19 ncRNA genes due to their
poor functional annotation led to the detection of no
additional patterns.

The gene lists obtained upon applying these three
sets of criteria not only differ in the total number of
genes included, but also in the degree of overlap
(Fig. 4). List I1 is essentially a more restricted version
of list I, as the transcriptome differentiation in day 14
is incorporated. List III differs substantially from list I
and list I, with 49 (59.8%) of the genes being specific
to it.

Genomic comparison
We compared our three lists of ageing-related genes

with that previously identified from genomic analysis
(Graves et al. 2017), in order to determine what

fraction of the differentially expressed genes between
population types harbored significantly differentiated
SVs, TE insertions, and SNPs. For SVs specifically,
we were interested in in duplications and deletion
events that could modify expression levels (Cardoso-
Moreira et al. 2016). Next, we checked for local TE
insertions that may also affect gene expression (Crid-
land et al. 2015). Lastly for SNPs, we were interested
in finding differentiation in gene regions that can
accommodate cis-regulatory motifs, i.e. the 5’ and 3’
UTRs and the promoter. The latter was taken to reside
within 1 kb upstream of the transcriptional start site of
the gene. To this purpose, we examined both coding
and non-coding gene regions, including exons,
introns, and the aforementioned untranslated regions,
as well as the upstream region for each of the
differentially expressed genes.

We identified 12, 8, and 2, in lists I, II, and III
respectively, differentially expressed genes that har-
bor differentiated SVs (Table S2). In contrast, only 3,
2, and 0, differentially expressed genes between the
A-type and C-type populations contain differentiated
TE. Further, we identified 48, 26, and 4 differentially
expressed genes (Table 1) that harbored differentiated
SNPs in lists I, II, and III respectively. Of these genes,
66.7% (32), 69.2% (18), and 75% (3), respectively,
had such SNPs within exonic or intronic regions. More
importantly, 60.4% (29), 65.4% (17), and 50% (2) of
the genes, respectively, contained SNPs in at least one
gene region where cis-regulatory motifs reside, poten-
tially contributing to the detected differences in
mRNA abundance. The remaining differentially
expressed genes either have no differentiated SNPs
or the SNPs are located in gene regions usually devoid
of cis-regulatory motifs. Differences in gene expres-
sion for this latter gene set should be primarily
influenced by trans-regulatory effects.

Table 1 Cis-regulatory nature of population-differentiating-SNPs in ageing-related differentially expressed genes

Cis-regulatory motifs

Non-cis-regulatory motifs

Promoter 5'UTR 3'UTR Combined* Exons Introns Combined* Total*
List I 20 9 7 29 18 19 32 48
List IT 13 4 4 17 12 14 18 26
List IIT 2 0 0 2 2 2 3 4

*Non-redundant among different gene regions

@ Springer
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Comparison of ageing genes to previous lists
of ageing-related genes

We compared our lists of candidate ageing genes to
others obtained in similar studies. First, we considered
the gene list at the repository for D. melanogaster at
GenAge (de Magalhaes 2014). Of the 193 genes
present in the GenAge database, only four were also
part of List I. Lists II and III showed no overlap with
the GenAge list. This lack of overlap may be due to the
fact that GenAge specifically focuses on genes that
have an ortholog associated with ageing in humans. In
addition, GenAge focuses on genes that are only
ageing-specific, and omits genes that may play roles in
other biological processes.

Subsequently, and more in the context of transcrip-
tomic changes associated with ageing, we compared
our lists to that from a previously published expression
profiling study in D. melanogaster (Carlson et al.
2015). That study found 1581 genes differentially
expressed across 11 time points and 79 days, com-
pared to a control sample consisting of 2-day old (after
eclosion) females. We identified 51, 20, and 5 genes
from their list that were also present in our I, II and III
lists, respectively. Interestingly, this is lower than
what we found by randomly selecting 1581 genes from
the reference genome and compare it to our ageing
lists. After 1000 simulations, we found that the
probability of having at least 51, 20, or 5 overlapping
genes from lists I, II, and III respectively was 0.824,
0.825, and 0.890. Thus random selections of genes
have more overlap with our results than the genes
identified by Carlson et al. (Carlson et al. 2015).
Conversely, if we were to take a random sample from
the reference genome using the length of our three lists
individually and compared it to their list of 1581
genes, we found the probability of having at least the
same number of overlapping genes as observed was
0.445, 0.574, and 0.759 for lists I, II, and III
respectively. A major difference between our study
and that of Carlson et al. (Carlson et al. 2015) is how a
gene was ultimately considered to be associated with
ageing. The gene list in Carlson et al. (Carlson et al.
2015) was obtained by studying transcriptional
changes in one large population over time, always
relative to the first time point. By contrast, the lists
generated in this study derive from comparing an
ageing set of populations and a non-ageing set of
populations under three different sets of assumptions.

An additional difference is that the females collected
in the study of Carlson et al. (Carlson et al. 2015) were
exposed to males for only 24 h before the beginning of
the assay, whereas our samples contain females that
were exposed to males the entire time up until their
sampling point.

Power of replication

We evaluated how our level of replication might have
impacted our inferences. The power to detect differ-
entially expressed genes is negligible with only four or
fewer replicates, which holds regardless of the set of
criteria used to deem a gene as ageing-related (Fig. 5).
Therefore, it is surprising that studies with this low
level of replication find even more differentially
expressed genes (Carlson et al. 2015; Hsu et al.
2019). Combining multiple inbred or isofemale lines is
commonplace in Drosophila studies, but they might in
fact contribute to the large number of differentially
expressed genes documented. Increased linkage dis-
equilibrium, which is a typical consequence of com-
bining multiple lines, and having insufficient
replication are likely to result in unforeseen effects
in gene expression. Therefore, our results strongly
suggest that, given the phenotypic plasticity of
expression levels (Scheiner et al. 2012; Dayan et al.
2015), using properly maintained evolved populations
that derived from an outbred population plus high
replication levels are crucial to reduce both type I
errors and type II errors when generating a portrait of
differences in gene expression.

Conclusions

Having two clearly defined sets of D. melanogaster
populations has enabled us to dissect what is ageing-
related in the transcriptome. Specifically, one set of ten
populations (A-type) is demographically ageing
between day 14 and day 21 and the other set of ten
populations (C-type) is not demographically ageing
(Fig. 1). This extreme contrast of ageing vs non-
ageing populations is particularly useful, because we
can assay them at the same chronological ages, day 14
and day 21. In addition, these populations are not
exposed to any metabolic arrest or other manipulation
[e.g. nematodes, (Ayyadevara et al. 2008)]; their
differences are genetic. Lastly, these two sets of
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Fig. 5 Differentially
expressed genes versus
number of replicates in each
treatment. a Number of
differentially expressed
genes determined between
the A-type and C-type for
both day 14 and day 21
depending on the number of
replicates included in the
analysis. b Number of
differentially expressed
genes between A-type and
C-type populations
sustained at both day 14 and
day 21. ¢ Number of
differentially expressed
genes deemed ageing-
related between ageing
populations and non-ageing
populations

populations are closely related, despite the stark
difference in their ageing patterns between day 14

and day 21.

Furthermore, these two sets of ten populations have
been extensively characterized for genomic differen-
tiation (Graves et al. 2017), developmental differen-
and physiological
differentiation (Rose et al. 2004) (Kezos et al. in
prep.). Developmentally, the two sets of ten popula-
tions show SNP, TE and SV differentiation. Pheno-
typically, the 10 A-type populations develop from egg
to pupation and pupation to eclosion significantly
faster than the 10 C-type populations. Physiologically,
the A-type populations have a shorter time to starva-
tion than the C-type populations and the same is true
for desiccation. Considering the stark difference
between the two sets of populations at the genomic
and phenotypic levels, it is not surprisingly that we
find here a substantial amount of transcriptomic

tiation (Burke et al.

differentiation.

Unlike the statistical results testing for differenti-
ation between A-type and C-type populations, within
A-type comparisons of populations and within C-type
comparisons show little to no differentiation. That is,
the transcriptomic results are parallel to those previ-
ously found for within-type convergence with respect
to life-history phenotypes (Burke et al. 2016) and
genomics (Graves et al. 2017). As before, this
convergence has arisen despite two very different
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selection histories underlying the differentiation of
members of the A and C sets of populations. Specif-
ically, the A group is made up of five populations that
share long-standing A-type selection (the ACO), as
well as five other populations that have undergone
A-type selection for substantially fewer generations
(the AO). Likewise, the C group is made up of five
populations that share relatively long-standing C-type
selection (the CO), as well as five other populations
that have undergone C-type selection for substantially
fewer generations (the nCO). The newly derived
populations are much more closely-related phyloge-
netically than the longer-standing populations, with
just 327 generations separating them versus 1171
generations separating the longer-standing popula-
tions. When comparing the newly derived populations
with each other and with their selection regime counter
parts (AO with ACO; nCO with CO), we find that the
newly-derived populations show no evidence of less
differentiation, suggesting that recent selection regime
has a larger impact on the transcriptome than evolu-
tionary history, as we have previously found both
phenotypically and genomically (Burke et al. 2016;
Graves et al. 2017). We believe this notion only stands
true for populations that maintain moderate census
size to combat the effects of inbreeding. With inbred
populations, we would expect evolutionary history to
have a larger impact on the transcriptome than recent
selection regime (Sarup et al. 2011a, b).
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When reviewing the nature of each differentiated
gene, there was a high proportion of non-coding RNA
genes that were differentially expressed. These genes
are currently poorly understood. But due to their
abundance among systematically differentiated tran-
scripts in our data, our findings support the hypothesis
that they can play an important role in gene regulation
(Deveson et al. 2017). Another striking result was that
only 4-6%, depending on which criteria used, of the
differentially expressed genes between the A-type and
O-type populations harbored SVs, TE insertions, or
SNPs in cis-regulatory regions, suggesting that much
of the transcriptome differentiation between popula-
tion types stems primarily from trans-regulatory
effects.

Next, when comparing our lists of ageing-related
genes to that of previous ageing related work (Carlson
etal. 2015; Hsu et al. 2019), we find very little overlap
with previous findings. In addition, we find little to no
enrichment for biological processes delimited in GO
with our ageing-related lists of differentiated tran-
scripts. These two results together suggest that our lists
are novel relative to the current state of ageing
transcriptomics in D. melanogaster.

Here we have presented two-time point compar-
isons using ten replicates for each set of populations.
But it is clear from Fig. 5 that even at ten replicates we
have not reached saturation for detection of differen-
tially expressed genes, suggesting that still more
replication would allow better detection of transcripts
that differentiate with respect to ageing versus non-
ageing. In addition to increased replication, more time
point sampling should improve our understanding of
how the transcriptome is affected by ageing. Lastly,
integrating genomic analysis with still more powerful
transcriptomics should further improve our under-
standing of how differentially expressed transcripts
are regulated.

Currently, we have only sequenced the transcrip-
tomes of our A-type and C-type populations, because
of their clear difference in ageing. Adding additional
types of populations to transcriptomic analysis should
foster the parsing of transcriptomic differentiation
with respect to whether or not any particular transcript
difference is involved in the differentiation of ageing
versus other types of phenotypic differentiation. In
previous phenotypic and genomic work, we have used
an intermediate set of ten populations, the B-type, in
addition to the current sets (Burke et al. 2016; Graves

et al. 2017; Mueller et al. 2018). The B-type popula-
tions have a generation length of 14 days, which falls
between that of the A-type and C-type populations.
The B-type populations would be therefore a prime
candidate to add to bolster our ability to parse
transcriptomic differentiation.

Although having a full suite of genomic, transcrip-
tomic, and phenotypic data is powerful in itself,
parsing all three bodies of data together is challenging.
Due to the inherent complexity of ageing, complexity
should be maintained and not sacrificed when analyz-
ing all these data together. Modeling techniques
commonly called “AI”, but more properly defined as
statistical learning (Hastie et al. 2009), allow us to
address this challenge of parsing complexity. Cur-
rently, the Fused Lasso Additive Model or FLAM
(Petersen et al. 2016; Mueller et al. 2018) shows
promise in making sense of large data sets, such as
those of genomic data. Ultimately, we propose that
combining the omics of highly replicated experimen-
tally evolved populations with statistical learning tools
could prove promising for uncovering the foundations
of any complex trait, those of ageing included.

Materials and methods
Experimental populations

The populations used here were experimentally
evolved over numerous generations (Rose et al.
2004; Burke et al. 2016; Graves et al. 2017). These
populations were subject to two selection regimes
which differed in length of their discrete generations.
Each selection regime was applied to two sets of five
populations, each with known distinct evolutionary
histories (Fig. S1). The ACO and AO sets are both
A-type, whereas the CO and nCO populations are both
C-type. Although the individuals of the two popula-
tion-types differ in body size, there is no evidence of
major allometric differences.

Fly husbandry

Each population is maintained over generations at a
census size of ~ 2000 individuals in order to reduce
the effects of genetic drift on genetic variation. Flies
are kept in 8-dram plastic vials during development
and placed in Plexiglass cages on day 10 (A-type) and
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day 14 (C-type). For the A-type treatment, once the
flies are placed in cages, they are given a 24 h
oviposition window on fresh food. For the C-type
treatment, the flies are left in cages until day 26, when
they are given 48 h to oviposit on fresh food. All
populations are fed with fresh medium made with
cooked bananas, corn syrup, yeast, barley malt, and
agar (Rose et al. 2004). Fresh food is supplemented
with 5% live yeast paste to enhance oviposition
duration egg-laying. All populations are kept at about
23 °C and exposed to a 24-h light cycle.

RNA preparation and sequencing

For each population and time point combination, 150
whole-body females from the same cohort were
submerged in TRIzol, snap-frozen in liquid nitrogen,
and stored at — 80C until extraction. Total RNA was
purified using the RNeasy Mini Kit (Qiagen). RNA
concentration, purity, and integrity were estimated
using a NanoDrop 8000 Spectrophotometer and the
RNA 6000 Nano Chip Kit (Agilent Technologies)
with an Agilent 2100 Bioanalyzer. Ribodepleted,
strand-specific paired-end libraries were prepared
using the Ribo-Zero Gold Set A and the TruSeq Total
RNA Library Prep kits from Illumina. Libraries were
multiplexed and sequenced from both ends for 75
cycles over four lanes on an Illumina HiSeq2500 at the
University California Irvine Genomics High Through-
put Facility.

Gene expression analysis

Quality checks of each RNA paired-end sequencing
output were performed with FastQC v0.11.5 (Andrews
2010). Subsequent sequence processing with Trim-
momatic v0.35 (Bolger et al. 2014) included removal
of adapter sequences, trimming of 3’ nucleotide calls
with Phred score lower than 30, and filtering out of
sequencing reads with a final length lower than 36 bp
or overall Phred score lower than 30. Paired-end reads
were mapped to the D. melanogaster Release v6.18
reference genome assembly (dos Santos et al. 2015)
using STAR (Dobin et al. 2013)—under default
settings except for an adjustment to avoid the detection
of novel junctions—as this tool shows enhanced
accuracy mapping rates in relation to other alignment
tools (Baruzzo et al. 2017). The average alignment rate
for the 40 sequencing outputs was 89.5%
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(minimum = 73.3%, maximum = 97.8%). Alignment
post-processing was performed with SAMtools
v0.1.19 (Li et al. 2009). Read counting per gene and
population was done using HTSeq v0.6.1p1 (Anders
et al. 2013) at default settings. Genome coverage was
estimated using the genomeCoverageBed utility from
BEDTools v2.25.0 (Cridland et al. 2015). Summary
statistics and NCBI SRA accession numbers are
provided in Table S1.

For each sample, per gene read counts were
normalized using the default DESeq?2 settings (Love
et al. 2014). Genes showing normalized count values
> 4 in at least eight out of ten populations, within at
least one of the treatment types, were included in
downstream analyses. To see any relationships
between populations, we conducted a principal com-
ponent analysis with the normalized count data using
prcomp and ggplot2 (Wickham 2016). To accommo-
date any block effect associated with different rounds
of extraction and sequencing, the normalized count
data for reproducibly expressed genes were analyzed
using a linear mixed effects model (R Development
Core Team 2016). In each population we have a
measure of gene expression, ez, from selection
treatment-i (i = 1 (A) or 2(C)), block-j (j =1 (ACO
and CO) or 2 (AO and nCO)), and population-
k (k=1,.,20). We can then model expression with
the mixed linear effects function,

ek = ,u+5,~o¢,~+bj+8k,

where §; = 0, if i = 1 and 1 otherwise, b and ¢ are
assumed to be independent random variables with a
normal distribution with zero mean and variances o7
and O'% respectively. Significant treatment effects are
determined by testing whether o, is significantly
different from zero.

Statistical significance for differential expression of
any given gene was set at a 5% FDR for ~ 4000 tests,
i.e. the number of expressed genes that passed filtering
(Benjamini and Hochberg 1995).

Searches for biological patterns across GO and
KEGG terms, and other genome features such as
chromosome distribution, were performed using
DAVID 6.8 (da Huang et al. 2009). The Benjamini—
Hochberg correction for multiple tests was applied
given that we were performing 50-600 tests, i.e. the
number of differentially expressed genes inputted into
DAVID, across different gene lists.
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